Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.760
Filtrar
1.
J Orthop Surg Res ; 19(1): 233, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600584

RESUMO

BACKGROUND: Femoral neck is one of the high-risk areas for benign tumors and tumor-like lesions. Small range of lesions may also lead to pathological fracture, femoral head necrosis and other serious problems. PURPOSE: To investigate a new minimally invasive surgical approach to resect femoral head and neck lesions in children. PATIENTS AND METHODS: Retrospective study of 20 patients with femoral neck and femoral head lesions from February 2019 to March 2023 in our hospital. Among them, 14 were boys and 6 were girls, 17 were femoral neck lesions and 3 were femoral head lesions. The age of the patients ranged from 3.2 to 12.6 years, with a mean of 7.1 years. The patients were divided into group A and group B according to different surgical approaches; group A used the Smith-Peterson approach, Watson-Jones approach or surgical dislocation approach and group B used the DAA. Intra-operatively, incision length, operative time and blood loss were recorded in both groups. Group A consisted of 1 femoral head lesion and 8 femoral neck lesions, including 5 cases of bone cyst and 4 cases of eosinophilic granuloma. Group B consisted of 2 femoral head lesion and 9 femoral neck lesions. A total of 11 patients with different types of disease were included in group B, including bone cysts (3 cases), aneurysmal bone cysts (1 case), eosinophilic granulomas (6 cases), Kaposi's sarcoma (1 case). RESULTS: The two groups of patients differed in terms of incision length (P < 0.05), operative blood loss (P < 0.05) and operative time (P < 0.05). At 6-48 months post-operatively, there were no significant differences in function and all patients had good hip function. CONCLUSION: The direct anterior approach is effective for resection of paediatric femoral head and neck lesions. It provides clear exposure of the surgical site, minimal trauma and does not compromise the integrity of the anterior musculature. LEVEL OF EVIDENCE: III.


Assuntos
Fraturas do Colo Femoral , Ferida Cirúrgica , Masculino , Feminino , Humanos , Criança , Pré-Escolar , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/cirurgia , Estudos Retrospectivos , Antivirais , Resultado do Tratamento , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/cirurgia , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/cirurgia
2.
J Biomed Sci ; 31(1): 41, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650001

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is distinguished by an extensive range of clinical heterogeneity with unpredictable disease flares and organ damage. This research investigates the potential of aberrant signatures on T cell genes, soluble Co-IRs/ligands, and Co-IRs expression on T cells as biomarkers for lupus disease parameters. METHODS: Comparative transcriptome profiling analysis of non-renal and end-stage renal disease (ESRD) phenotypes of SLE was performed using CD4 + and CD8 + cDNA microarrays of sorted T cells. Comparing the expression of Co-IRs on T cells and serum soluble mediators among healthy and SLE phenotypes. RESULTS: SLE patients with ESRD were downregulated CD38, PLEK, interferon-γ, CX3CR1, FGFBP2, and SLCO4C1 transcripts on CD4 + and CD8 + T cells simultaneously and NKG7, FCRL6, GZMB/H, FcγRIII, ITGAM, Fas ligand, TBX21, LYN, granulysin, CCL4L1, CMKLR1, HLA-DRß, KIR2DL3, and KLRD1 in CD8 T cells. Pathway enrichment and PPI network analyses revealed that the overwhelming majority of Differentially Expressed Genes (DEGs) have been affiliated with novel cytotoxic, antigen presentation, and chemokine-cell migration signature pathways. CD8 + GZMK + T cells that are varied in nature, including CD161 + Mucosal-associated invariant T (MAIT) cells and CD161- aged-associated T (Taa) cells and CD161-GZMK + GZMB + T cells might account for a higher level of GZMK in CD8 + T cells associated with ESRD. SLE patients have higher TIGIT + , PD1 + , and lower CD127 + cell percentages on CD4 + T cells, higher TIM3 + , TIGIT + , HLA-DR + cell frequency, and lower MFI expression of CD127, CD160 in CD8 T cells. Co-IRs expression in T cells was correlated with soluble PD-1, PDL-2, and TIM3 levels, as well as SLE disease activity, clinical phenotypes, and immune-therapy responses. CONCLUSION: The signature of dysfunctional pathways defines a distinct immunity pattern in LN ESRD patients. Expression levels of Co-IRs in peripheral blood T cells and serum levels of soluble PD1/PDL-2/TIM3 can serve as biomarkers for evaluating clinical parameters and therapeutic responses.


Assuntos
Lúpus Eritematoso Sistêmico , Humanos , Feminino , Adulto , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Transcriptoma , Masculino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Biomarcadores/sangue , Falência Renal Crônica/imunologia , Falência Renal Crônica/genética
3.
Bioresour Technol ; 401: 130708, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636878

RESUMO

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38602633

RESUMO

Photocatalytic disinfection is a promising technology with low cost and high efficiency. However, most of the current studies on photocatalytic disinfection ignore the widespread presence of natural organic matter (NOM) in water bodies, so the incomplete conclusions obtained may not be applicable. Herein, this paper systematically studied the influence of humic acid (HA), one of the most important components of NOM, on the photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO2 nanofibers. We found that with the addition of HA, the light transmittance of the solution at 550 nm decreased from 94 to 60%, and the band gap of the photocatalyst was increased from 2.96 to 3.05 eV. Compared with reacting without HA, the degradation amount of RNA of f2 decreased by 88.7% after HA was added, and the RNA concentration increased from 1.95 to 4.38 ng·µL-1 after the reaction. Hence, we propose mechanisms of the effect of HA on photocatalytic disinfection: photo-shielding, passivation of photocatalysts, quenching of free radicals, and virus protection. Photo-shielding and photocatalyst passivation lead to the decrease of photocatalyst activity, and the reactive oxygen species (ROSs) (·OH, ·O2-, 1O2, H2O2) are further trapped by HA. The HA in water also can protect the shape of phage f2 and reduce the leakage of protein and the destruction of ribonucleic acid (RNA). This work provides an insight into the mechanisms for the influence of HA in photocatalytic disinfection process and a theoretical basis for its practical application.

5.
Science ; 384(6694): 414-419, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662836

RESUMO

Degeneracies in multilayer graphene, including spin, valley, and layer degrees of freedom, can be lifted by Coulomb interactions, resulting in rich broken-symmetry states. Here, we report a ferromagnetic state in charge-neutral ABCA-tetralayer graphene driven by proximity-induced spin-orbit coupling from adjacent tungsten diselenide. The ferromagnetic state is identified as a Chern insulator with a Chern number of 4; its maximum Hall resistance reaches 78% quantization at zero magnetic field and is fully quantized at either 0.4 or -1.5 tesla. Three distinct broken-symmetry insulating states, layer-antiferromagnet, Chern insulator, and layer-polarized insulator, along with their transitions, can be continuously tuned by the vertical displacement field. In this system, the magnetic order of the Chern insulator can be switched by three knobs, including magnetic field, electrical doping, and vertical displacement field.

6.
Cell Metab ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642552

RESUMO

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.

7.
Int J Biol Macromol ; : 131696, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642679

RESUMO

Carbon­carbon bonds serve as the fundamental structural backbone of organic molecules. As a critical CC bond forming enzyme, α-oxoamine synthase is responsible for the synthesis of α-amino ketones by performing the condensation reaction between amino acids and acyl-CoAs. We previously identified an α-oxoamine synthase, named as Alb29, involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072. This enzyme belongs to the α-oxoamine synthase (AOS) family, a subfamily under the pyridoxal 5'-phosphate (PLP) dependent enzyme superfamily. In this study, we report the crystal structures of Alb29 bound to the substrates PLP and L-Glu, which provide the atomic-level structural insights into the substrate recognition by Alb29. We discover that Alb29 can catalyze the amino transformation from L-Gln to L-Glu, besides the condensation of L-Glu with ß-methylcrotonyl coenzyme A. Subsequent structural analysis has revealed that one flexible loop in Alb29 plays an important role in both amino transformation and condensation. Based on the crystal structure of the S87G mutant in the loop region, we capture two distinct conformations of the flexible loop in the active site, compared with the wild-type Alb29. Our study offers valuable insights into the catalytic mechanism underlying substrate recognition of Alb29.

8.
Materials (Basel) ; 17(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591479

RESUMO

This study is a multiscale experimental investigation into the embrittlement of Al-Zn-Mg aluminum alloy (7075-T6) caused by liquid metal gallium. The results of the experiment demonstrate that the tensile strength of the 7075-T6 aluminum alloy significantly weakens with an increase in the embrittlement temperature and a prolonged embrittlement time, whereas it improves with an increase in the strain rate. On the basis of the analysis of the experimental data, the sensitivity of the embrittlement of 7075-T6 aluminum alloy by liquid gallium to the loading strain rate is significantly higher compared to other environmental factors. In addition, this study also includes several experiments for microscopic observation, such as Scanning Electron Microscope (SEM) observation, Energy-Dispersive Spectrometer (EDS) spectroscopy, and Electron Back Scatter Diffraction (EBSD) analysis. The experimental observations confirmed the following: (1) gallium is enriched in the intergranular space of aluminum; (2) the fracture mode of 7075-T6 aluminum alloy changes from ductile to brittle fracture; and (3) the infiltration of liquid gallium into aluminum alloys and its enrichment in the intergranular space result in the formation of new dislocation nucleation sites, in addition to the original dislocations cutting and entanglement. This reduces the material's ability to undergo plastic deformation, intensifies stress concentration at the dislocation nucleation point, and, ultimately, leads to the evolution of dislocations into cracks.

9.
Front Bioeng Biotechnol ; 12: 1358802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425992

RESUMO

Background: The low osteogenic differentiation potential and attenuated anti-inflammatory effect of adipose-derived stem cells (ADSCs) from animals with type 2 diabetes mellitus (T2DM) limits osseointegration of the implant. However, the underlying mechanisms are not fully understood. Methods: Western blotting and qRT-PCR analyses were performed to investigate the effects of PTEN on the osteogenic capacity of ADSCs of T2DM rats (TADSCs). We conducted animal experiments in T2DM-Sprague Dawley (SD) rats to evaluate the osteogenic capacity of modified TADSC sheets in vivo. New bone formation was assessed by micro-CT and histological analyses. Results: In this study, adipose-derived stem cells of T2DM rats exhibited an impaired osteogenic capacity. RNA-seq analysis showed that PTEN mRNA expression was upregulated in TADSCs, which attenuated the osteogenic capacity of TADSCs by inhibiting the AKT/mTOR/HIF-1α signaling pathway. miR-140-3p, which inhibits PTEN, was suppressed in TADSCs. Overexpression or inhibition of PTEN could correspondingly reduce or enhance the osteogenic ability of TADSCs by regulating the AKT/mTOR/HIF-1α signaling pathway. TADSCs transfected with PTEN siRNA resulted in higher and lower expressions of genes encoded in M2 macrophages (Arg1) and M1 macrophages (iNOS), respectively. In the T2DM rat model, PTEN inhibition in TADSC sheets promoted macrophage polarization toward the M2 phenotype, attenuated inflammation, and enhanced osseointegration around implants. Conclusion: Upregulation of PTEN, which was partially due to the inhibition of miR-140-3p, is important for the attenuated osteogenesis by TADSCs owing to the inhibition of the AKT/mTOR/HIF-1α signaling pathway. Inhibition of PTEN significantly improves the anti-inflammatory effect and osteogenic capacity of TADSCs, thus promoting peri-implant bone formation in T2DM rats. Our findings offer a potential therapeutic approach for modifying stem cells derived from patients with T2DM to enhance osseointegration.

10.
Scand J Trauma Resusc Emerg Med ; 32(1): 18, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454455

RESUMO

OBJECTIVE: Tranexamic acid (TXA) demonstrates therapeutic efficacy in the management of traumatic brain injury (TBI). The objective of this systematic review and meta-analysis was to evaluate the safety and effectiveness of TXA in patients with TBI. METHODS: The databases, namely PubMed, Embase, Web of Science, and Cochrane Library databases, were systematically searched to retrieve randomized controlled trials (RCTs) investigating the efficacy of TXA for TBI from January 2000 to November 2023. RESULTS: The present meta-analysis incorporates ten RCTs. Compared to the placebo group, administration of TXA in patients with TBI resulted in a significant reduction in mortality (P = 0.05), hemorrhage growth (P = 0.03), and volume of hemorrhage growth (P = 0.003). However, no significant impact was observed on neurosurgery outcomes (P = 0.25), seizure occurrence (P = 0.78), or pulmonary embolism incidence (P = 0.52). CONCLUSION: The administration of TXA is significantly associated with reduced mortality and hemorrhage growth in patients suffering from TBI, while the need of neurosurgery, seizures, and incidence of pulmonary embolism remains comparable to that observed with placebo.


Assuntos
Antifibrinolíticos , Lesões Encefálicas Traumáticas , Embolia Pulmonar , Ácido Tranexâmico , Humanos , Ácido Tranexâmico/uso terapêutico , Antifibrinolíticos/uso terapêutico , Hemorragia/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Embolia Pulmonar/complicações , Embolia Pulmonar/tratamento farmacológico
11.
Sci Rep ; 14(1): 5970, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472293

RESUMO

Despite clinical and epidemiological evidence suggestive of a link between glioblastoma (GBM) and periodontitis (PD), the shared mechanisms of gene regulation remain elusive. In this study, we identify differentially expressed genes (DEGs) that overlap between the GEO datasets GSE4290 [GBM] and GSE10334 [PD]. Functional enrichment analysis was conducted, and key modules were identified using protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA). The expression levels of CXCR4, LY96, and C3 were found to be significantly elevated in both the test dataset and external validation dataset, making them key crosstalk genes. Additionally, immune cell landscape analysis revealed elevated expression levels of multiple immune cells in GBM and PD compared to controls, with the key crosstalk genes negatively associated with Macrophages M2. FLI1 was identified as a potential key transcription factor (TF) regulating the three key crosstalk genes, with increased expression in the full dataset. These findings contribute to our understanding of the immune and inflammatory aspects of the comorbidity mechanism between GBM and PD.


Assuntos
Glioblastoma , Periodontite , Humanos , Reações Cruzadas , Expressão Gênica , Perfilação da Expressão Gênica , Biologia Computacional , Redes Reguladoras de Genes
12.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474367

RESUMO

Co-inhibitory receptors (Co-IRs) are essential in controlling the progression of immunopathology in rheumatoid arthritis (RA) by limiting T cell activation. The objective of this investigation was to determine the phenotypic expression of Co-IR T cells and to assess the levels of serum soluble PD-1, PDL-2, and TIM3 in Taiwanese RA patients. METHODS: Co-IRs T cells were immunophenotyped employing multicolor flow cytometry, and ELISA was utilized for measuring soluble PD-1, PDL-2, and TIM3. Correlations have been detected across the percentage of T cells expressing Co-IRs (MFI) and different indicators in the blood, including ESR, high-sensitivity CRP (hsCRP), 28 joint disease activity scores (DAS28), and soluble PD-1/PDL-2/TIM3. RESULTS: In RA patients, we recognized elevated levels of PD-1 (CD279), CTLA-4, and TIGIT in CD4+ T cells; TIGIT, HLA-DR, TIM3, and LAG3 in CD8+ T cells; and CD8+CD279+TIM3+, CD8+HLA-DR+CD38+ T cells. The following tests were revealed to be correlated with hsCRP: CD4/CD279 MFI, CD4/CD279%, CD4/TIM3%, CD8/TIM3%, CD8/TIM3 MFI, CD8/LAG3%, and CD8+HLA-DR+CD38+%. CD8/LAG3 and CD8/TIM3 MFIs are linked to ESR. DAS28-ESR and DAS28-CRP exhibited relationships with CD4/CD127 MFI, CD8/CD279%, and CD8/CD127 MFI, respectively. CD4+CD279+TIM3+% was correlated with DAS28-ESR (p = 0.0084, N = 46), DAS28-CRP (p = 0.007, N = 47), and hsCRP (p = 0.002, N = 56), respectively. In the serum of patients with RA, levels of soluble PD-1, PDL-2, and Tim3 were extremely elevated. CD4+ TIM3+% (p = 0.0089, N = 46) and CD8+ TIM3+% (p = 0.0305, N = 46) were correlated with sTIM3 levels; sPD1 levels were correlated with CD4+CD279+% (p < 0.0001, N = 31) and CD3+CD279+% (p = 0.0084, N = 30). CONCLUSIONS: Co-IR expressions on CD4+ and CD8+ T cells, as well as soluble PD-1, PDL-2, and TIM3 levels, could function as indicators of disease activity and potentially play crucial roles in the pathogenesis of RA.


Assuntos
Artrite Reumatoide , Receptor de Morte Celular Programada 1 , Humanos , Proteína C-Reativa/metabolismo , Receptor Celular 2 do Vírus da Hepatite A , Artrite Reumatoide/patologia , Antígenos HLA-DR , Receptores Imunológicos
13.
World Neurosurg ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537785

RESUMO

OBJETIVE: This study aims to introduce the unilateral biplanar screw-rod fixation (UBSF) technique (a hybrid fixation technique: 2 sets of atlantoaxial screws were placed on the same side), which serves as a salvage method for traditional posterior atlantoaxial fixation. To summarize the indications of this technique and to assess its safety, feasibility, and clinical effectiveness in the treatment of odontoid fractures. METHODS: Patients with odontoid fractures were enrolled according to special criteria. Surgical duration and intraoperative blood loss were documented. Patients were followed up for a minimum of 12 months. X-ray and computerized tomography scans were conducted and reviewed at 1 day, and patients were asked to return for computerized tomography reviews at 3, 6, 9, and 12 months after surgery until fracture union. Recorded and compared the Neck Visual Analog Scale and Neck Disability Index presurgery and at 1 week and 12 months postsurgery. RESULTS: Between January 2016 and December 2022, our study enrolled 7 patients who were diagnosed with odontoid fractures accompanied by atlantoaxial bone or vascular abnormalities. All 7 patients underwent successful UBSF surgery, and no neurovascular injuries were recorded during surgery. Fracture union was observed in all patients, and the Neck Visual Analog Scale and Neck Disability Index scores improved significantly at 1 week and 12 months postoperative (P < 0.01). CONCLUSIONS: The UBSF technique has been demonstrated to be safe, feasible, and effective in treating odontoid fractures. In cases where the atlantoaxial bone or vascular structure exhibits abnormalities, it can function as a supplementary or alternative approach to the conventional posterior C1-2 fixation.

14.
Int J Biol Macromol ; 265(Pt 2): 130681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458285

RESUMO

The corn starch nanoparticles were prepared by incorporating three kinds of polyphenols, including quercetin, proanthocyanidins and tannin acid. The physicochemical and digestive properties of corn starch nanoparticles were researched. The quercetin showed a higher complexation index than proanthocyanidins and tannin acid when they complexed with corn starch. The mean size of corn starch quercetin, proanthocyanidins and tannin acid were 168.5 nm, 179.1 nm and 188.6 nm, respectively. XRD results indicated that all the corn starch-polyphenols complex showed V-type crystalline structure, the crystallinity of corn starch-quercetin complex was 19.31 %, which showed more formation of amylose-quercetin single helical formed than the other two starch-polyphenol complexes. In vitro digestion revealed that polyphenols could resist digestion and quercetin increased the content of resistant starch from 23.32 % to 35.24 % and polyphenols can form complexes with starch through hydrophobic interactions or hydrogen bonding. This study indicated the hydrophobic polyphenols had a more significant effect on the digestibility of corn starch. And the cell toxicity assessments demonstrated that all nanoparticles were nontoxic and biocompatible.


Assuntos
Proantocianidinas , Amido , Amido/química , Zea mays/química , Taninos , Proantocianidinas/química , Quercetina , Amilose/química , Polifenóis
15.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456504

RESUMO

SARS-CoV-2 spike-based vaccines are used to control the COVID-19 pandemic. However, emerging variants have become resistant to antibody neutralization and further mutations may lead to full resistance. We tested whether T cells alone could provide protection without antibodies. We designed a T cell-based vaccine in which SARS-CoV-2 spike sequences were rearranged and attached to ubiquitin. Immunization of mice with the vaccine induced no specific antibodies, but strong specific T cell responses. We challenged mice with SARS-CoV-2 wild-type strain or an Omicron variant after the immunization and monitored survival or viral titers in the lungs. The mice were significantly protected against death and weight loss caused by the SARS-CoV-2 wild-type strain, and the viral titers in the lungs of mice challenged with the SARS-CoV-2 wild-type strain or the Omicron variant were significantly reduced. Importantly, depletion of CD4+ or CD8+ T cells led to significant loss of the protection. Our analyses of spike protein sequences of the variants indicated that fewer than one-third presented by dominant HLA alleles were mutated and that most of the mutated epitopes were in the subunit 1 region. As the subunit 2 region is conservative, the vaccines targeting spike protein are expected to protect against future variants due to the T cell responses.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Vacinas contra COVID-19
16.
Neurogenetics ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460076

RESUMO

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.

17.
Biotechnol Prog ; : e3454, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539261

RESUMO

Precipitation during the viral inactivation, neutralization and depth filtration step of a monoclonal antibody (mAb) purification process can provide quantifiable and potentially significant impurity reduction. However, robust commercial implementation of this unit operation is limited due to the lack of a representative scale-down model to characterize the removal of impurities. The objective of this work is to compare isoelectric impurity precipitation behavior for a monoclonal antibody product across scales, from benchtop to pilot manufacturing. Scaling parameters such as agitation and vessel geometry were investigated, with the precipitate amount and particle size distribution (PSD) characterized via turbidity and flow imaging microscopy. Qualitative analysis of the data shows that maintaining a consistent energy dissipation rate (EDR) could be used for approximate scaling of vessel geometry and agitator speeds in the absence of more detailed simulation. For a more rigorous approach, however, agitation was simulated via computational fluid dynamics (CFD) and these results were applied alongside a population balance model to simulate the trajectory of the size distribution of precipitate. CFD results were analyzed within a framework of a two-compartment mixing model comprising regions of high- and low-energy agitation, with material exchange between the two. Rate terms accounting for particle formation, growth and breakage within each region were defined, accounting for dependence on turbulence. This bifurcated model was successful in capturing the variability in particle sizes over time across scales. Such an approach enhances the mechanistic understanding of impurity precipitation and provides additional tools for model-assisted prediction for process scaling.

18.
Sci Total Environ ; 923: 171510, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453076

RESUMO

Shallow waters are characterized by fluctuating environmental conditions, modulating marine life cycles and biological phenomena. Multiple variations in water temperature could affect eggs and embryos during spawning events of many marine invertebrate species, yet most of the findings on embryonic development in invertebrates come from experiments based on the constant temperature. In this study, to examine the effects of temperature variation on octopus embryos, Amphioctopus fangsiao, a common shallow-water octopus along the coast of China, was exposed to the constant temperature (18 °C, in situ temperature of the seawater in Lianyungang), ramping temperatures (from 18 to 24 °C), diel oscillating temperatures (18 °C and 20 °C for 12 h each day), and acute increasing temperatures (the temperature increased sharply from 18 °C to 24 °C at embryonic development stage XIX) for 47 days (from embryogenesis to settlement). The results demonstrated that the temperature variations accelerated the development time of A. fangsiao embryos. Temperature fluctuations could cause embryonic oxidative damage and disorder of glycolipid metabolism, thereby affecting the growth performance of embryos and the survival rate of hatchings. Through transcriptome sequencing, the mechanistic adaption of the embryo to environmental temperature variations was revealed. The pathways involved in the TCA cycle, DNA replication and repair, protein synthesis, cell signaling, and nervous system damage repair were significantly enriched, indicating that the embryo could improve heat tolerance to thermal stress by regulating gene expression. Moreover, acute warming temperatures posed the most detrimental effects on A. fangsiao embryos, which could cause embryos to hatch prematurely from the vegetal pole, further reducing the survival of hatchings. Meanwhile, the diel oscillating temperature was observed to affect the normal morphology of the embryo, resulting in embryo deformities. Thus, the constant temperature is critical for balanced growth and defense status in octopuses by maintaining metabolism homeostasis. For the first time, this study evaluates the effects of multiple temperature fluctuations on embryos of A. fangsiao, providing new insights into the physiological changes and molecular responses of cephalopod embryos following dynamic temperature stress.


Assuntos
Octopodiformes , Animais , Humanos , Recém-Nascido , Temperatura , Água , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário
19.
Nat Commun ; 15(1): 2583, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519498

RESUMO

Alternative polyadenylation can occur in introns, termed intronic polyadenylation (IPA), has been implicated in diverse biological processes and diseases, as it can produce noncoding transcripts or transcripts with truncated coding regions. However, a reliable method is required to accurately characterize IPA. Here, we propose a computational method called InPACT, which allows for the precise characterization of IPA from conventional RNA-seq data. InPACT successfully identifies numerous previously unannotated IPA transcripts in human cells, many of which are translated, as evidenced by ribosome profiling data. We have demonstrated that InPACT outperforms other methods in terms of IPA identification and quantification. Moreover, InPACT applied to monocyte activation reveals temporally coordinated IPA events. Further application on single-cell RNA-seq data of human fetal bone marrow reveals the expression of several IPA isoforms in a context-specific manner. Therefore, InPACT represents a powerful tool for the accurate characterization of IPA from RNA-seq data.


Assuntos
Poliadenilação , RNA , Humanos , Poliadenilação/genética , Íntrons/genética , Análise de Sequência de RNA , RNA-Seq
20.
Phytomedicine ; 128: 155349, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522315

RESUMO

BACKGROUND: Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal microbiota through metabolizing phosphatidylcholine, choline, l-carnitine and betaine in the diet, has been implicated in the pathogenesis of atherosclerosis (AS). Concurrently, dietary polyphenols have garnered attention for their potential to ameliorate obesity, diabetes and atherosclerosis primarily by modulating the intestinal microbial structure. Hickory (Carya cathayensis) nut, a polyphenol-rich food product favored for its palatability, emerges as a candidate for exploration. HYPOTHESIS/PURPOSE: The relationship between polyphenol of hickory nut and atherosclerosis prevention will be firstly clarified, providing theoretical basis for the discovery of natural products counteracting TMAO-induced AS process in hickory nut. STUDY DESIGN AND METHODS: Employing Enzyme-linked Immunosorbent Assay (ELISA) and histological examination of aortic samples, the effects of total polyphenol extract on obesity index, inflammatory index and pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high choline diet were evaluated. Further, the composition, abundance, and function of mouse gut microbiota were analyzed through 16srDNA sequencing. Concurrently, the levels of TMAO and the expression of key enzymes (CutC and FMO3) involved in its synthesis are quantified using ELISA, Western Blot and Real-Time Quantitative PCR (RT-qPCR). Additionally, targeted metabolomic profiling of the hickory nut polyphenol extract was conducted, accompanied by molecular docking simulations to predict interactions between candidate polyphenols and the CutC/FMO3 using Autodock Vina. Finally, the docking prediction were verified by microscale thermophoresis (MST) . RESULTS: Polyphenol extracts of hickory nut improved the index of obesity and inflammation, and alleviated the pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high-choline diet. Meanwhile, these polyphenol extracts also changed the composition and function of intestinal microbiota, and increased the abundance of microorganisms in mice. Notably, the abundance of intestinal microbiota endowed with CutC gene was significantly reduced, coherent with expression of CutC catalyzing TMA production. Moreover, polyphenol extracts also decreased the expression of FMO3 in the liver, contributing to the reduction of TMAO levels in serum. Furthermore, metabonomic profile analysis of these polyphenol extracts identified 647 kinds of polyphenols. Molecular docking predication further demonstrated that Casuariin and Cinnamtannin B2 had the most potential inhibition on the enzymatic activities of CutC or FMO3, respectively. Notably, MST analysis corroborated the potential for direct interaction between CutC enzyme and available polyphenols such as Corilagin, (-)-Gallocatechin gallate and Epigallocatechin gallate. CONCLUSION: Hickory polyphenol extract can mitigate HFD-induced AS by regulating intestinal microflora in murine models. In addition, TMA-FMO3-TMAO pathway may play a key role in this process. This research unveils, for the inaugural time, the complex interaction between hickory nut-derived polyphenols and gut microbial, providing novel insights into the role of dietary polyphenols in AS prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...